C# 带有纬度/经度的日出/日落
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/2056555/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
C# Sunrise/Sunset with latitude/longitude
提问by Ian Vink
Is there a way in C# to calculate given a latitude and longitude when the sun will set and rise for a given day?
在 C# 中有没有办法计算给定的纬度和经度,当太阳在给定的日子里落山和升起?
采纳答案by AnthonyWJones
回答by Douglas
Start with this info:
从以下信息开始:
I'm using this to wright a ruby script that is still in the making. I'm having trouble understanding the multi-part julian dates.
我正在使用它来编写仍在制作中的 ruby 脚本。我无法理解多部分朱利安日期。
One thing that is clear is that you should go for exact solar transit time. Then subtract and add the semi_diurnal_arc = acos(cos_omega) which is based upon your latitude and the solar declination. Oh! And be sure to include solar center and earth refraction. It seems this earth is quite the magician.
很清楚的一件事是,您应该选择准确的太阳传输时间。然后减去并添加基于您的纬度和太阳偏角的 semi_diurnal_arc = acos(cos_omega)。哦!并且一定要包括太阳中心和地球折射。看来这个地球是相当的魔术师。
回答by Sal Manella
You need a formula which includes the equation of time to allow for the eccentric orbit of the Earth moon system around the sun. You need to use coordinates with proper datum points such as WGS84 or NAD27 or something like that. You need to use the JULIAN calendar and not the one we use on a daily basis to get5 these times right. It is not an easy thing to guess within a second of time. Id like to have the time at my location where the shadow length is equal to the whatever height. this should happen twice per day when the sun is elevated 60 degrees above the horizon before and after high noon. Also, as far as I understand, you just need to add exactly one day per year to get sidereal time so if you like increase your clock frequency X 366.25/365.25 you might now have a sidereal clock instead of a civil clock ??? "MATH is the LANGUAGE in which someone powerful has written the universe"
您需要一个包含时间方程的公式,以考虑地球月球系统围绕太阳的偏心轨道。您需要使用具有适当基准点的坐标,例如 WGS84 或 NAD27 或类似的东西。您需要使用 JULIAN 日历而不是我们每天使用的日历来正确把握这些时间。在一秒钟之内猜出不是一件容易的事情。我想在我的位置有时间,阴影长度等于任何高度。当太阳在正午之前和之后高于地平线 60 度时,这应该每天发生两次。此外,据我所知,您只需要每年增加一天即可获得恒星时间,因此如果您想增加时钟频率 X 366.25/365.25,您现在可能拥有一个恒星时钟而不是民用时钟???”
回答by einsA
回答by jebeaudet
I've made a quick Python script to do that : SunriseSunsetCalculator
我已经制作了一个快速的 Python 脚本来做到这一点:SunriseSunsetCalculator
I have yet to wrap it inside a class but it may be useful for others.
我还没有将它包装在一个类中,但它可能对其他人有用。
Edit : Open source is awesome, since committing the basic script, someone wrapped it in a module and another one added a cli interface! Thanks to mbideau and nfischer for their contributions!
编辑:开源很棒,因为提交了基本脚本,有人将它包装在一个模块中,另一个人添加了一个 cli 界面!感谢 mbideau 和 nfischer 的贡献!
回答by dotsa
I used NAA javascript and c# to create this library in C#.
我使用 NAA javascript 和 c# 在 C# 中创建这个库。
I tested it against these two sites, and it shows time exactly like the sites do.
我针对这两个站点对其进行了测试,它显示的时间与这些站点完全一样。
http://www.timeanddate.com/sun/usa/seattle
http://www.timeanddate.com/sun/usa/seattle
回答by Richard Pursehouse
The accepted answer for this was a JavaScript implementation, which didn't suit my application because I needed to do the calculation in C#.
对此的公认答案是 JavaScript 实现,它不适合我的应用程序,因为我需要在 C# 中进行计算。
I've used this C# code: http://wiki.crowe.co.nz/Calculate%20Sunrise%2fSunset.ashx, which I have validated against the sunrise/sunset times here: http://www.timeanddate.com/astronomy/.
我使用了这个 C# 代码:http: //wiki.crowe.co.nz/Calculate%20Sunrise%2fSunset.ashx,我已经在这里验证了日出/日落时间:http: //www.timeanddate.com/天文学/。
If I round seconds to the nearest minute, the C# implementation's sunrise and sunset times match the corresponding values displayed on timeanddate.com, including cases of daylight savings. The code is a bit overwhelming though (unless you'd like moon phase data also), so I'll be refactoring it to do specifically what I require now the numbers are correct.
如果我将秒四舍五入到最接近的分钟,则 C# 实现的日出和日落时间与 timeanddate.com 上显示的相应值匹配,包括夏令时的情况。不过代码有点繁重(除非你也想要月相数据),所以我将重构它来具体做我现在需要的数字是正确的。
回答by Jose Florido
If you prefer an external service you could use this nice and free sunrise and sunset times API: http://sunrise-sunset.org/api
如果您更喜欢外部服务,您可以使用这个漂亮且免费的日出和日落时间 API:http: //sunrise-sunset.org/api
I have been using it for several projects and it works very well, data seems to be very accurate. Just do an HTTP GET request to http://api.sunrise-sunset.org/json
我已经在几个项目中使用过它,效果很好,数据似乎非常准确。只需对http://api.sunrise-sunset.org/json执行 HTTP GET 请求
Accepted Parameters:
接受的参数:
- lat: Latitude in decimal degrees. Required.
- lng: Longitude in decimal degrees. Required.
- date: Date in YYYY-MM-DD format. Also accepts other date formats and even relative date formats. If not present, date defaults to current date. Optional.
- callback: Callback function name for JSONP response. Optional.
- formatted: 0 or 1 (1 is default). Time values in response will be expressed following ISO 8601 and day_length will be expressed in seconds. Optional.
- lat:以十进制度数表示的纬度。必需的。
- lng:十进制度数的经度。必需的。
- 日期:YYYY-MM-DD 格式的日期。还接受其他日期格式甚至相对日期格式。如果不存在,则日期默认为当前日期。可选的。
- callback:JSONP 响应的回调函数名称。可选的。
- 格式化:0 或 1(默认为 1)。响应中的时间值将按照 ISO 8601 表示,而 day_length 将以秒表示。可选的。
The response includes sunrise and sunset times as well as twilight times.
响应包括日出和日落时间以及黄昏时间。
回答by tsuz
This API seems to work for me:
这个 API 似乎对我有用:
回答by smirkingman
VB.Net version of dotsa's answer, which can also determine time-zones automatically.
dotsa 答案的 VB.Net 版本,它也可以自动确定时区。
Output (checked by watching the sunset this evening):
输出(通过观看今晚的日落检查):
Main.VB:
主.VB:
Module Main
Sub Main()
' http://www.timeanddate.com/sun/usa/seattle
' http://www.esrl.noaa.gov/gmd/grad/solcalc/
' Vessy, Switzerland
Dim latitude As Double = 46.17062
Dim longitude As Double = 6.161667
Dim dst As Boolean = True
Dim timehere As DateTime = DateTime.Now
Console.WriteLine("It is currently {0:HH:mm:ss} UTC", DateTime.UtcNow)
Console.WriteLine("The time here, at {0}°,{1}° is {2:HH:mm:ss}", latitude, longitude, timehere)
Dim local As TimeZoneInfo = TimeZoneInfo.Local
Dim zone As Integer = local.BaseUtcOffset().TotalHours
If local.SupportsDaylightSavingTime Then
Dim standard As String = local.StandardName
Dim daylight As String = local.DaylightName
dst = local.IsDaylightSavingTime(timehere)
Dim current As String = IIf(dst, daylight, standard)
Console.WriteLine("Daylight-saving time is supported here. Current offset {0:+0} hours, {1}", zone, current)
Else
Console.WriteLine("Daylight-saving time is not supported here")
End If
System.Console.WriteLine("Sunrise today {0}", Sunrises(latitude, longitude))
System.Console.WriteLine("Sunset today {0}", Sunsets(latitude, longitude))
System.Console.ReadLine()
End Sub
End Module
Sun.vb:
孙.vb:
Public Module Sun
' Get sunrise time at latitude, longitude using local system timezone
Function Sunrises(latitude As Double, longitude As Double) As DateTime
Dim julian As Double = JulianDay(DateTime.Now)
Dim rises As Double = SunRiseUTC(julian, latitude, longitude)
Dim timehere As DateTime = DateTime.Now
Dim local As TimeZoneInfo = TimeZoneInfo.Local
Dim dst As Boolean = local.IsDaylightSavingTime(timehere)
Dim zone As Integer = local.BaseUtcOffset().TotalHours
Dim result As DateTime = getDateTime(rises, zone, timehere, dst)
Return result
End Function
' Get sunset time at latitude, longitude using local system timezone
Function Sunsets(latitude As Double, longitude As Double) As DateTime
Dim julian As Double = JulianDay(DateTime.Now)
Dim rises As Double = SunSetUTC(julian, latitude, longitude)
Dim timehere As DateTime = DateTime.Now
Dim local As TimeZoneInfo = TimeZoneInfo.Local
Dim dst As Boolean = local.IsDaylightSavingTime(timehere)
Dim zone As Integer = local.BaseUtcOffset().TotalHours
Dim result As DateTime = getDateTime(rises, zone, timehere, dst)
Return result
End Function
' Convert radian angle to degrees
Public Function Degrees(angleRad As Double) As Double
Return (180.0 * angleRad / Math.PI)
End Function
' Convert degree angle to radians
Public Function Radians(angleDeg As Double) As Double
Return (Math.PI * angleDeg / 180.0)
End Function
'* Name: JulianDay
'* Type: Function
'* Purpose: Julian day from calendar day
'* Arguments:
'* year : 4 digit year
'* month: January = 1
'* day : 1 - 31
'* Return value:
'* The Julian day corresponding to the date
'* Note:
'* Number is returned for start of day. Fractional days should be
'* added later.
Public Function JulianDay(year As Integer, month As Integer, day As Integer) As Double
If month <= 2 Then
year -= 1
month += 12
End If
Dim A As Double = Math.Floor(year / 100.0)
Dim B As Double = 2 - A + Math.Floor(A / 4)
Dim julian As Double = Math.Floor(365.25 * (year + 4716)) + Math.Floor(30.6001 * (month + 1)) + day + B - 1524.5
Return julian
End Function
Public Function JulianDay([date] As DateTime) As Double
Return JulianDay([date].Year, [date].Month, [date].Day)
End Function
'***********************************************************************/
'* Name: JulianCenturies
'* Type: Function
'* Purpose: convert Julian Day to centuries since J2000.0.
'* Arguments:
'* julian : the Julian Day to convert
'* Return value:
'* the T value corresponding to the Julian Day
'***********************************************************************/
Public Function JulianCenturies(julian As Double) As Double
Dim T As Double = (julian - 2451545.0) / 36525.0
Return T
End Function
'***********************************************************************/
'* Name: JulianDayFromJulianCentury
'* Type: Function
'* Purpose: convert centuries since J2000.0 to Julian Day.
'* Arguments:
'* t : number of Julian centuries since J2000.0
'* Return value:
'* the Julian Day corresponding to the t value
'***********************************************************************/
Public Function JulianDayFromJulianCentury(t As Double) As Double
Dim julian As Double = t * 36525.0 + 2451545.0
Return julian
End Function
'***********************************************************************/
'* Name: calGeomMeanLongSun
'* Type: Function
'* Purpose: calculate the Geometric Mean Longitude of the Sun
'* Arguments:
'* t : number of Julian centuries since J2000.0
'* Return value:
'* the Geometric Mean Longitude of the Sun in degrees
'***********************************************************************/
Public Function GemoetricMeanLongitude(t As Double) As Double
Dim L0 As Double = 280.46646 + t * (36000.76983 + 0.0003032 * t)
While L0 > 360.0
L0 -= 360.0
End While
While L0 < 0.0
L0 += 360.0
End While
Return L0
' in degrees
End Function
'***********************************************************************/
'* Name: calGeomAnomalySun
'* Type: Function
'* Purpose: calculate the Geometric Mean Anomaly of the Sun
'* Arguments:
'* t : number of Julian centuries since J2000.0
'* Return value:
'* the Geometric Mean Anomaly of the Sun in degrees
'***********************************************************************/
Public Function GemoetricMeanAnomaly(t As Double) As Double
Dim M As Double = 357.52911 + t * (35999.05029 - 0.0001537 * t)
Return M
' in degrees
End Function
'***********************************************************************/
'* Name: EarthOrbitEccentricity
'* Type: Function
'* Purpose: calculate the eccentricity of earth's orbit
'* Arguments:
'* t : number of Julian centuries since J2000.0
'* Return value:
'* the unitless eccentricity
'***********************************************************************/
Public Function EarthOrbitEccentricity(t As Double) As Double
Dim e As Double = 0.016708634 - t * (0.000042037 + 0.0000001267 * t)
Return e
' unitless
End Function
'***********************************************************************/
'* Name: SunCentre
'* Type: Function
'* Purpose: calculate the equation of center for the sun
'* Arguments:
'* t : number of Julian centuries since J2000.0
'* Return value:
'* in degrees
'***********************************************************************/
Public Function SunCentre(t As Double) As Double
Dim m As Double = GemoetricMeanAnomaly(t)
Dim mrad As Double = Radians(m)
Dim sinm As Double = Math.Sin(mrad)
Dim sin2m As Double = Math.Sin(mrad + mrad)
Dim sin3m As Double = Math.Sin(mrad + mrad + mrad)
Dim C As Double = sinm * (1.914602 - t * (0.004817 + 0.000014 * t)) + sin2m * (0.019993 - 0.000101 * t) + sin3m * 0.000289
Return C
' in degrees
End Function
'***********************************************************************/
'* Name: SunTrueLongitude
'* Type: Function
'* Purpose: calculate the true longitude of the sun
'* Arguments:
'* t : number of Julian centuries since J2000.0
'* Return value:
'* sun's true longitude in degrees
'***********************************************************************/
Public Function SunTrueLongitude(t As Double) As Double
Dim l0 As Double = GemoetricMeanLongitude(t)
Dim c As Double = SunCentre(t)
Dim O As Double = l0 + c
Return O
' in degrees
End Function
'***********************************************************************/
'* Name: SunTrueAnomaly
'* Type: Function
'* Purpose: calculate the true anamoly of the sun
'* Arguments:
'* t : number of Julian centuries since J2000.0
'* Return value:
'* sun's true anamoly in degrees
'***********************************************************************/
Public Function SunTrueAnomaly(t As Double) As Double
Dim m As Double = GemoetricMeanAnomaly(t)
Dim c As Double = SunCentre(t)
Dim v As Double = m + c
Return v
' in degrees
End Function
'***********************************************************************/
'* Name: SunDistanceAU
'* Type: Function
'* Purpose: calculate the distance to the sun in AU
'* Arguments:
'* t : number of Julian centuries since J2000.0
'* Return value:
'* sun radius vector in AUs
'***********************************************************************/
Public Function SunDistanceAU(t As Double) As Double
Dim v As Double = SunTrueAnomaly(t)
Dim e As Double = EarthOrbitEccentricity(t)
Dim R As Double = (1.000001018 * (1 - e * e)) / (1 + e * Math.Cos(Radians(v)))
Return R
' in AUs
End Function
'***********************************************************************/
'* Name: SunApparentLongitude
'* Type: Function
'* Purpose: calculate the apparent longitude of the sun
'* Arguments:
'* t : number of Julian centuries since J2000.0
'* Return value:
'* sun's apparent longitude in degrees
'***********************************************************************/
Public Function SunApparentLongitude(t As Double) As Double
Dim o As Double = SunTrueLongitude(t)
Dim omega As Double = 125.04 - 1934.136 * t
Dim lambda As Double = o - 0.00569 - 0.00478 * Math.Sin(Radians(omega))
Return lambda
' in degrees
End Function
'***********************************************************************/
'* Name: MeanObliquityOfEcliptic
'* Type: Function
'* Purpose: calculate the mean obliquity of the ecliptic
'* Arguments:
'* t : number of Julian centuries since J2000.0
'* Return value:
'* mean obliquity in degrees
'***********************************************************************/
Public Function MeanObliquityOfEcliptic(t As Double) As Double
Dim seconds As Double = 21.448 - t * (46.815 + t * (0.00059 - t * (0.001813)))
Dim e0 As Double = 23.0 + (26.0 + (seconds / 60.0)) / 60.0
Return e0
' in degrees
End Function
'***********************************************************************/
'* Name: calcObliquityCorrection
'* Type: Function
'* Purpose: calculate the corrected obliquity of the ecliptic
'* Arguments:
'* t : number of Julian centuries since J2000.0
'* Return value:
'* corrected obliquity in degrees
'***********************************************************************/
Public Function calcObliquityCorrection(t As Double) As Double
Dim e0 As Double = MeanObliquityOfEcliptic(t)
Dim omega As Double = 125.04 - 1934.136 * t
Dim e As Double = e0 + 0.00256 * Math.Cos(Radians(omega))
Return e
' in degrees
End Function
'***********************************************************************/
'* Name: SunRightAscension
'* Type: Function
'* Purpose: calculate the right ascension of the sun
'* Arguments:
'* t : number of Julian centuries since J2000.0
'* Return value:
'* sun's right ascension in degrees
'***********************************************************************/
Public Function SunRightAscension(t As Double) As Double
Dim e As Double = calcObliquityCorrection(t)
Dim lambda As Double = SunApparentLongitude(t)
Dim tananum As Double = (Math.Cos(Radians(e)) * Math.Sin(Radians(lambda)))
Dim tanadenom As Double = (Math.Cos(Radians(lambda)))
Dim alpha As Double = Degrees(Math.Atan2(tananum, tanadenom))
Return alpha
' in degrees
End Function
'***********************************************************************/
'* Name: SunDeclination
'* Type: Function
'* Purpose: calculate the declination of the sun
'* Arguments:
'* t : number of Julian centuries since J2000.0
'* Return value:
'* sun's declination in degrees
'***********************************************************************/
Public Function SunDeclination(t As Double) As Double
Dim e As Double = calcObliquityCorrection(t)
Dim lambda As Double = SunApparentLongitude(t)
Dim sint As Double = Math.Sin(Radians(e)) * Math.Sin(Radians(lambda))
Dim theta As Double = Degrees(Math.Asin(sint))
Return theta
' in degrees
End Function
'***********************************************************************/
'* Name: TrueSolarToMeanSolar
'* Type: Function
'* Purpose: calculate the difference between true solar time and mean
'* solar time
'* Arguments:
'* t : number of Julian centuries since J2000.0
'* Return value:
'* equation of time in minutes of time
'***********************************************************************/
Public Function TrueSolarToMeanSolar(t As Double) As Double
Dim epsilon As Double = calcObliquityCorrection(t)
Dim l0 As Double = GemoetricMeanLongitude(t)
Dim e As Double = EarthOrbitEccentricity(t)
Dim m As Double = GemoetricMeanAnomaly(t)
Dim y As Double = Math.Tan(Radians(epsilon) / 2.0)
y *= y
Dim sin2l0 As Double = Math.Sin(2.0 * Radians(l0))
Dim sinm As Double = Math.Sin(Radians(m))
Dim cos2l0 As Double = Math.Cos(2.0 * Radians(l0))
Dim sin4l0 As Double = Math.Sin(4.0 * Radians(l0))
Dim sin2m As Double = Math.Sin(2.0 * Radians(m))
Dim Etime As Double = y * sin2l0 - 2.0 * e * sinm + 4.0 * e * y * sinm * cos2l0 - 0.5 * y * y * sin4l0 - 1.25 * e * e * sin2m
Return Degrees(Etime) * 4.0
' in minutes of time
End Function
'***********************************************************************/
'* Name: SunriseHourAngle
'* Type: Function
'* Purpose: calculate the hour angle of the sun at sunrise for the
'* latitude
'* Arguments:
'* lat : latitude of observer in degrees
'* solarDec : declination angle of sun in degrees
'* Return value:
'* hour angle of sunrise in radians
'***********************************************************************/
Public Function SunriseHourAngle(lat As Double, solarDec As Double) As Double
Dim latRad As Double = Radians(lat)
Dim sdRad As Double = Radians(solarDec)
Dim HAarg As Double = (Math.Cos(Radians(90.833)) / (Math.Cos(latRad) * Math.Cos(sdRad)) - Math.Tan(latRad) * Math.Tan(sdRad))
Dim HA As Double = (Math.Acos(Math.Cos(Radians(90.833)) / (Math.Cos(latRad) * Math.Cos(sdRad)) - Math.Tan(latRad) * Math.Tan(sdRad)))
Return HA
' in radians
End Function
'***********************************************************************/
'* Name: SunsetHourAngle
'* Type: Function
'* Purpose: calculate the hour angle of the sun at sunset for the
'* latitude
'* Arguments:
'* lat : latitude of observer in degrees
'* solarDec : declination angle of sun in degrees
'* Return value:
'* hour angle of sunset in radians
'***********************************************************************/
Public Function SunsetHourAngle(lat As Double, solarDec As Double) As Double
Dim latRad As Double = Radians(lat)
Dim sdRad As Double = Radians(solarDec)
Dim HAarg As Double = (Math.Cos(Radians(90.833)) / (Math.Cos(latRad) * Math.Cos(sdRad)) - Math.Tan(latRad) * Math.Tan(sdRad))
Dim HA As Double = (Math.Acos(Math.Cos(Radians(90.833)) / (Math.Cos(latRad) * Math.Cos(sdRad)) - Math.Tan(latRad) * Math.Tan(sdRad)))
Return -HA
' in radians
End Function
'***********************************************************************/
'* Name: SunRiseUTC
'* Type: Function
'* Purpose: calculate the Universal Coordinated Time (UTC) of sunrise
'* for the given day at the given location on earth
'* Arguments:
'* julian : julian day
'* latitude : latitude of observer in degrees
'* longitude : longitude of observer in degrees
'* Return value:
'* time in minutes from zero Z
'***********************************************************************/
'Public Function SunRiseUTC(julian As Double, latitude As Double, longitude As Double) As Double
' Dim t As Double = JulianCenturies(julian)
' ' *** Find the time of solar noon at the location, and use
' ' that declination. This is better than start of the
' ' Julian day
' Dim noonmin As Double = SolarNoonUTC(t, longitude)
' Dim tnoon As Double = JulianCenturies(julian + noonmin / 1440.0)
' ' *** First pass to approximate sunrise (using solar noon)
' Dim eqTime As Double = TrueSolarToMeanSolar(tnoon)
' Dim solarDec As Double = SunDeclination(tnoon)
' Dim hourAngle As Double = SunriseHourAngle(latitude, solarDec)
' Dim delta As Double = longitude - Degrees(hourAngle)
' Dim timeDiff As Double = 4 * delta
' ' in minutes of time
' Dim timeUTC As Double = 720 + timeDiff - eqTime
' ' in minutes
' ' alert("eqTime = " + eqTime + "\nsolarDec = " + solarDec + "\ntimeUTC = " + timeUTC);
' ' *** Second pass includes fractional julianay in gamma calc
' Dim newt As Double = JulianCenturies(JulianDayFromJulianCentury(t) + timeUTC / 1440.0)
' eqTime = TrueSolarToMeanSolar(newt)
' solarDec = SunDeclination(newt)
' hourAngle = SunriseHourAngle(latitude, solarDec)
' delta = longitude - Degrees(hourAngle)
' timeDiff = 4 * delta
' timeUTC = 720 + timeDiff - eqTime
' ' in minutes
' ' alert("eqTime = " + eqTime + "\nsolarDec = " + solarDec + "\ntimeUTC = " + timeUTC);
' Return timeUTC
'End Function
'***********************************************************************/
'* Name: SolarNoonUTC
'* Type: Function
'* Purpose: calculate the Universal Coordinated Time (UTC) of solar
'* noon for the given day at the given location on earth
'* Arguments:
'* t : number of Julian centuries since J2000.0
'* longitude : longitude of observer in degrees
'* Return value:
'* time in minutes from zero Z
'***********************************************************************/
Public Function SolarNoonUTC(t As Double, longitude As Double) As Double
' First pass uses approximate solar noon to calculate eqtime
Dim tnoon As Double = JulianCenturies(JulianDayFromJulianCentury(t) + longitude / 360.0)
Dim eqTime As Double = TrueSolarToMeanSolar(tnoon)
Dim solNoonUTC As Double = 720 + (longitude * 4) - eqTime
' min
Dim newt As Double = JulianCenturies(JulianDayFromJulianCentury(t) - 0.5 + solNoonUTC / 1440.0)
eqTime = TrueSolarToMeanSolar(newt)
' double solarNoonDec = SunDeclination(newt);
solNoonUTC = 720 + (longitude * 4) - eqTime
' min
Return solNoonUTC
End Function
'***********************************************************************/
'* Name: SunSetUTC
'* Type: Function
'* Purpose: calculate the Universal Coordinated Time (UTC) of sunset
'* for the given day at the given location on earth
'* Arguments:
'* julian : julian day
'* latitude : latitude of observer in degrees
'* longitude : longitude of observer in degrees
'* Return value:
'* time in minutes from zero Z
'***********************************************************************/
Public Function SunSetUTC(julian As Double, latitude As Double, longitude As Double) As Double
Dim t = JulianCenturies(julian)
Dim eqTime = TrueSolarToMeanSolar(t)
Dim solarDec = SunDeclination(t)
Dim hourAngle = SunriseHourAngle(latitude, solarDec)
hourAngle = -hourAngle
Dim delta = longitude + Degrees(hourAngle)
Dim timeUTC = 720 - (4.0 * delta) - eqTime
' in minutes
Return timeUTC
End Function
Public Function SunRiseUTC(julian As Double, latitude As Double, longitude As Double) As Double
Dim t = JulianCenturies(julian)
Dim eqTime = TrueSolarToMeanSolar(t)
Dim solarDec = SunDeclination(t)
Dim hourAngle = SunriseHourAngle(latitude, solarDec)
Dim delta = longitude + Degrees(hourAngle)
Dim timeUTC = 720 - (4.0 * delta) - eqTime
' in minutes
Return timeUTC
End Function
Public Function getTimeString(time As Double, timezone As Integer, julian As Double, dst As Boolean) As String
Dim timeLocal = time + (timezone * 60.0)
Dim riseT = JulianCenturies(julian + time / 1440.0)
timeLocal += (If((dst), 60.0, 0.0))
Return getTimeString(timeLocal)
End Function
Public Function getDateTime(time As Double, timezone As Integer, [date] As DateTime, dst As Boolean) As System.Nullable(Of DateTime)
Dim julian As Double = JulianDay([date])
Dim timeLocal = time + (timezone * 60.0)
Dim riseT = JulianCenturies(julian + time / 1440.0)
timeLocal += (If((dst), 60.0, 0.0))
Return getDateTime(timeLocal, [date])
End Function
Private Function getTimeString(minutes As Double) As String
Dim output As String = ""
If (minutes >= 0) AndAlso (minutes < 1440) Then
Dim floatHour = minutes / 60.0
Dim hour = Math.Floor(floatHour)
Dim floatMinute = 60.0 * (floatHour - Math.Floor(floatHour))
Dim minute = Math.Floor(floatMinute)
Dim floatSec = 60.0 * (floatMinute - Math.Floor(floatMinute))
Dim second = Math.Floor(floatSec + 0.5)
If second > 59 Then
second = 0
minute += 1
End If
If (second >= 30) Then
minute += 1
End If
If minute > 59 Then
minute = 0
hour += 1
End If
output = [String].Format("{0:00}:{1:00}", hour, minute)
Else
Return "error"
End If
Return output
End Function
Private Function getDateTime(minutes As Double, [date] As DateTime) As System.Nullable(Of DateTime)
Dim retVal As System.Nullable(Of DateTime) = Nothing
If (minutes >= 0) AndAlso (minutes < 1440) Then
Dim floatHour = minutes / 60.0
Dim hour = Math.Floor(floatHour)
Dim floatMinute = 60.0 * (floatHour - Math.Floor(floatHour))
Dim minute = Math.Floor(floatMinute)
Dim floatSec = 60.0 * (floatMinute - Math.Floor(floatMinute))
Dim second = Math.Floor(floatSec + 0.5)
If second > 59 Then
second = 0
minute += 1
End If
If (second >= 30) Then
minute += 1
End If
If minute > 59 Then
minute = 0
hour += 1
End If
Return New DateTime([date].Year, [date].Month, [date].Day, CInt(hour), CInt(minute), CInt(second))
Else
Return retVal
End If
End Function
End Module